

Form:	Form Number	EXC-01-02-02A		
	Issue Number and Date	2/3/24/2022/2963		
Course Syllabus	Jurse Synabus			
	Number and Date of Revision or Modification			
	Deans Council Approval Decision Number	2/3/24/2023		
	The Date of the Deans Council Approval Decision	23/01/2023		
	Number of Pages	06		

1.	Course Title	Classical Electrodynamics-1			
2.	Course Number	0362753			
2	Credit Hours (Theory, Practical)	3 theory			
5.	Contact Hours (Theory, Practical)	3 theory			
4.	Prerequisites/ Corequisites	No prerequisites			
5.	Program Title	M.Sc. in Physics			
6.	Program Code				
7.	School/ Center	Faculty of Science			
8.	Department	Department of Physics			
9.	Course Level	1 st year			
10.	Year of Study and Semester (s)	1 st Semester 2024/2025			
11	Other Department(s) Involved in	-			
11.	Teaching the Course				
12.	Main Learning Language	English			
13.	Learning Types	\square Face to face learning \square Blended \square Fully online			
14.	Online Platforms(s)	☐Moodle ☑Microsoft Teams			
15.	Issuing Date	October 2024			
16.	Revision Date	January 2025			

17. Course Coordinator:

Name: Dr. Ziad Abu Waar	Contact hours: 10:30-11:30 Sunday, Tuesday and Wednesday
Office number: Physics 006	Phone number: 065355000 Ext.: 22063
Email: <u>ziad.abuwaar@ju.edu.jo</u>	

18. Other Instructors:

Faculty Members of the Department of Physics

19. Course Description:

Electric field and potential, multipole potentials and fields, electric field in material media; Magnetic field, Biot Savart's law and Ampere's law, magnetic field in material media, vector potential, Green's theorem.

Boundary value problems in electrostatics and magnetostatics: Laplace's and Poisson's equations in spherical, cylindrical and Cartesian coordinates. Method of Images.

Time –dependent fields, energy in electromagnetic fields, Maxwell's equations, Poynting's theorem. Electromagnetic waves in free space, Propagation in bounded regions, reflection and refraction.

- **20. Program Intended Learning Outcomes:** (To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program)
 - SO1: to be able to identify, formulate, and solve broadly defined technical or scientific problems by applying knowledge of mathematics and science and/or technical topics to areas relevant to the discipline.
 - 2. **SO2:** to be able to formulate or design a scientific system, process, procedure or program to contribute achieving scientific desired needs.
 - 3. **SO3:** to be able to develop and conduct experiments or test hypotheses, analyze and interpret data and use scientific judgment to draw conclusions.
 - 4. **SO4:** to be able to communicate his/her scientific contributions effectively with a range of audiences.

- 5. **SO5:** to be able to recognize and demonstrate social, ethical and professional responsibilities and the impact of technical and/or scientific solutions in global economic, environmental, and societal contexts.
- 6. **SO6:** to be able to function effectively independently and on teams for establishing goals, plan tasks, meet deadlines, and analyze risk and uncertainty.
- **21. Course Intended Learning Outcomes:** (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

1. Understanding the Fundamentals of Electromagnetism

- Develop a deep understanding of the basic principles of classical electrodynamics, including the electric and magnetic fields, charge distributions, and their interactions.
- Formulate and apply Maxwell's equations in various contexts, including both in vacuum and in media.

2. Apply Maxwell's Equations

- Gain proficiency in solving Maxwell's equations for simple systems, both in static and timevarying cases.
- Analyze electromagnetic wave propagation in different media (e.g., vacuum, conductors, dielectrics).

3. Electrostatics and Magnetostatics

- Master the techniques for solving electrostatic and magnetostatic problems, including the use of Poisson's and Laplace's equations, Green's functions, and boundary conditions.
- Study methods such as the method of images and multipole expansion to solve problems with different symmetries.

4. Energy and Momentum in Electromagnetic Fields

- Understand the concepts of electromagnetic energy density, Poynting vector, and the conservation of energy and momentum in electrodynamics.
- Derive and interpret the energy-momentum tensor for the electromagnetic field.

5. Electromagnetic Potentials

- Learn the gauge freedom in electrodynamics and understand the different gauges (Coulomb, Lorentz, and others).
- Understand and use the concepts of the scalar and vector potentials in describing the electric and magnetic fields.
- Apply the retarded potential formulation for solving time-dependent electromagnetic problems.

6. Special Techniques in Electrodynamics

- Develop familiarity with advanced mathematical techniques used in electrodynamics, such as Fourier transforms, integral equations, and the use of spherical harmonics.
- Use of complex analysis and Green's functions for solving boundary value problems.

الجامعة الاردنية

Course		The learn	ning levels to	be achieved		
ILOs	Remembering	Understanding	Applying	Analysing	evaluating	Creating
1	\checkmark	~		~	~	
2		~	✓	~	~	
3	\checkmark	~	~	~		
4		\checkmark	~	\checkmark		
5		✓	✓	\checkmark		
6		✓	✓	✓		

2⁷. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

Program ILOs	ILO (1)	ILO (2)	ILO (3)	ILO (4)	ILO (5)
Course ILOs					
1. Understanding	\checkmark	\checkmark			
the Fundamentals					
of					
Electromagnetism					
2. Apply	v	v			
Maxwell's					
Equations					

	-	-	 	
3. Electrostatics and Magnetostatics	V	V		
4. Energy and Momentum in Electromagnetic Fields	V	V		
5.Electromagnetic Potentials	✓	✓		
6.Special Techniques in Electrodynamics	 ✓ 	 ✓ 		

2[°]. Topic Outline and Schedule:

Week	Lecture	Topic	ILO/s Linked to the Topic	Learning Types (Face to Face/ Blended/ Fully Online)	Platform Used	Synchronous / Asynchronous Lecturing	Evaluation Methods	Learning Resources
	1.		ILO (1,3)	Face To	Teams	Synchr onous		
1	I	Electric charge, Coulomb's Law		Face			Discussion	
1	1.		ILO (1,3)	Face To	Teams	Synchr onous		
	2	electric fields, electric potential		Face			Discussion	
2	2.	Review of vector calculus: divergence,	ILO (1,3)	Face To	Teams	Synchr	Diaguagier	
2	1	curl, gradient.		Face		onous	, homework	

الجامعة الاردنية

	•		IIO(13)		Teams	Synchr	
	2.	Review of vector calculus: divergence,	120 (1,5)	Face To	reams	onous	Discussion
	2	curl, gradient.		Face			, homework
	3.	Gauss's law, symmetries solution to	ILO (1,3)		Teams	Synchr	
	J.	Poisson's equation, conductors,		Face To		onous	
2	1	dielectric materials.		Face			Discussion
3	2	Gauss's law, symmetries solution to	ILO (1,3)		Teams	Synchr	
	3.	Poisson's equation, conductors,		Face To		onous	
	2	dielectric materials.		Face			Discussion
		Boundary value problems, method of	ILO (1,3)		Teams	Synchr	
	4.	images, uniqueness theorem, Laplace's		Face To		onous	
	1	equation.		Face			Discussion
4		Boundary value problems, method of	ILO (1,3)	1 400	Teams	Synchr	
	4.	images, uniqueness theorem. Laplace's		Face To		onous	
	2	equation		Ease			Discussion
		Boundary value problems method of	ILO (1,3)	race	Teams	Synchr	Discussion
	5.	images uniqueness theorem Lanlace's		Face To		onous	
	1	equation					Discussion
5		Poundary value problems method of	ILO (1.3)	Face	Teams	Synchr	, homework
	5.	Boundary value problems, method of		Face To		onous	
	2	images, uniqueness theorem, Laplace s		Tuee To			
		equation.	$II \cap (1 3)$	Face	Teams	Synchr	Discussion
	6.	Dipole, quadrupole, and higher-order	ILO (1,5)	Face To	Teams	onous	
6	1	moments of charge distributions.		Face			Discussion
0	6.	Dipole, quadrupole, and higher-order	ILO (1,3)	Face To	Teams	Synchr	
	2	moments of charge distributions.		Face		onous	Discussion
	_	Magnetic fields. Biot-Savart law.	ILO (2,4)		Teams	Synchr	
	7.	Ampere's law, magnetic vector		Face To		onous	
_	1	potential.		Face			Discussion
7		Magnetic fields Biot-Savart law	ILO (2,4)	1 400	Teams	Synchr	, nome work
	7.	Ampere's law magnetic vector		Face To		onous	
	2	notential		Ease			Discussion
		Magnetic fields Biot-Sayart law	ILO (2,4)	race	Teams	Synchr	Discussion
	8.	Ampere's law magnetic vector		Face To		onous	
	1	notential		-			Diamaian
8		Magnatia fielda Diat Count laur	ILO (2.4)	Face	Teams	Synchr	Discussion
	8.	Ampere's low magnetic vector		Face To		onous	
	2	Ampere's law, magnetic vector		1 400 10			D : 1
		potential.	$II \cap (2 4)$	Face	Teams	Synchr	Discussion
	9.	Magnetic fields, Biot-Savart law,	110 (2,7)	Face To	i cullis	onous	
	1	Ampere's law, magnetic vector		1 400 10			Discussion
9		potential.		Face	Taorra	C	, homework
	9.	Boundary conditions for the magnetic	ILU (2,4)		Teams	onous	
	2	field, magnetization, and bound		Face To			
	-	currents.		Face			Discussion

الجامعة الاردنية

			HOGY	1	T		r
	10	Boundary conditions for the magnetic	ILO (2,4)		Teams	Synchr	
	10	field, magnetization, and bound		Face To		onous	
	.1	currents.		Face			Discussion
10	1.0	Boundary conditions for the magnetic	ILO (2,4)		Teams	Synchr	
	10	field, magnetization, and bound		Face To		onous	
	.2	currents		Essa			Discussion
		Boundary conditions for the magnetic	ILO (2.4)	Face	Teams	Svnchr	Discussion
	11	field magnetization and hound		Face To		onous	
	.1	neid, magnetization, and bound		1400 10			
		currents.	ПО (5 с)	Face	T	0 1	Discussion
11		Time-varying fields, Maxwell's	ILO (5,6)		Teams	onous	
	11	equations, displacement current, wave					
	.2	equation for electric and magnetic		Face To			Discussion
		fields.		Face			, homework
		Time-varying fields, Maxwell's	ILO (5,6)		Teams	Synchr	
	12	equations, displacement current, wave				onous	
	.1	equation for electric and magnetic		Face To			
	. –	fields.		Face			Discussion
12		Time-varving fields Maxwell's	ILO (5,6)	Tace	Teams	Synchr	Discussion
	12	aquations displacement surront wave				onous	
	12	equations, displacement current, wave		Face To			
	.2	equation for electric and magnetic		1400 10			
		TIEIDS.	$\mathbf{HO}\left(56\right)$	Face	Taama	Symoha	Discussion
		Time-varying fields, Maxwell's	ILU (5,6)		Teams	onous	
	13	equations, displacement current, wave					
12	.1	equation for electric and magnetic		Face To			
15		fields.		Face			Discussion
	13	Plane electromagnetic waves.	ILO (5,6)	Face To	Teams	Synchr	
	.2	polarization, propagation in vacuum		Enco		onous	Discussion
-	14		ILO (5,6)	Face To	Teams	Synchr	, nonework
	14	Plane electromagnetic waves,		race 10		onous	
14	.1	polarization, propagation in vacuum.		Face			Discussion
17	14	Plane electromagnetic waves,	ILO (5,6)	Face To	Teams	Synchr	
	.2	polarization, propagation in vacuum.		Face		onous	Discussion
	15	· · · ·	ILO (1-6)	Face To	Teams	Synchr	
	1	Daviow				onous	.
15	•1	KEVIEW	IIO(1.6)	Face	Tooma	Sumaha	Discussion
	15		ILU (1-6)	Face To	Teams	onous	
	.2	Review		Face			Discussion

2[±]. Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluatio n Activity	M ar k	Topic(s)	ILO/s Linked to the Evaluation activity	Period (Week)	Platf orm
First Midterm	30 %	Electric fields, electric potential, method of images, Boundary value problems.	ILO 1,3	٨ th	
2nd midterm	30 %	Dipole, quadrupole, Boundary conditions for the magnetic field, magnetization, and bound currents.	ILO 2, 4,5	12 th	
Final exam	40 %	All subjects	ILO 1-6	15 th	

2°. Course Requirements:

(e.g.: students should have a computer, internet connection, webcam, account on a specific software/platform...etc.):

The students are expected to have internet connection and a calculator

27. Course Policies:

A- Attendance policies:

Students are expected to attend all class sessions. If a student cannot attend a class session, the teacher must be notified prior to that. For the university's rules and regulations, the student's total absences must not exceed 15 % of the total class hours. Please refer to the University of Jordan student Handbook for further explanation.

B- Absences from exams and submitting assignments on time:

- a. Failure in attending a course exam other than the final exam will result in zero mark unless the student provides an official acceptable excuse to the instructor who approves a make up exam.
- b. Failure in attending the final exam will result in zero mark unless the student presents an official acceptable excuse to the Dean of his/her faculty who approves

الجامعة الاردنية

an incomplete exam, normally scheduled to be conducted during the first two weeks of the successive semester.

C- Health and safety procedures:

We don't have any policy at the moment considering the safety procedures, nevertheless, the instructor in each session has to give a general safety instructions for the student.

D- Honesty policy regarding cheating, plagiarism, misbehavior:

Cheating, plagiarism, misbehavior are attempts to gain marks dishonestly and includes; but not limited to:

- Copying from another student's work.
- Using materials not authorized by the institute.
- Collaborating with another student during a test, without permission.
- Knowingly using, buying, selling, or stealing the contents of a test.
- Plagiarism which means presenting another person's work or ideas as one's own, without attribution.
- Using any media (including mobiles) during the exam.
- E- Grading policy:

Grades will be awarded based on the statistical distribution of marks out of 100%

F- Available university services that support achievement in the course:

- Faculty members website
- E-Learning website

2^v. References:

A- Required book(s), assigned reading and audio-visuals:

- John. D. Jackson, Classical Electrodynamics, Third Edition, (John Wiley & Sons, Inc, 1999).
- B- Recommended books, materials, and media:
 - Classical Electricity and Magnetism by W. K. Panofsky and M. Phillips (Addison-Wesley, Cambridge, Mass, 2005).
 - Introduction to Electrodynamics, David J. Griffiths, 4th edition,(Precntice Hall, NJ 2013).

2[^]. Additional information:

Name of the Instructor or the Course Coordinator: Ziad Abu Waar	Signature:	Date: October 10, 2024
Name of the Head of Quality Assurance Committee/ Department	Signature:	Date:
Name of the Head of Department	Signature:	Date:
Name of the Head of Quality Assurance Committee/ School or Center	Signature:	Date:
Name of the Dean or the Director	Signature:	Date: